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Noether’s theorem and dynamical groups in quantum mechanics 
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Exterior, CU, Apdo. Postal 70-543, 04510 Mexico DF, Mexico 

Received 15 June 1990 

Abstract. In contrast with the case of symmetry groups, no unique definition for the 
dynamical group generators of a given quantum Hamiltonian has been adopted in the 
literature. Following some work by Malkin, Man’ko and Lipkin, Dothan proposed a general 
definition based on the symmetry group of the corresponding time-dependent quantum 
mechanical equation of motion for the system. We show that this definition arises naturally 
from the quantum version of time dependent Noether symmetry transformations and derive 
the dynamical algebras for some simple examples. 

1. Introduction 

Symmetry methods have been applied to the analysis of quantum mechanical systems 
in a wide variety of cases, ranging from exact solutions, for which the hydrogen atom 
[ l ]  and the harmonic oscillator [2] are the best known examples, to models which 
incorporate in an approximate way the main features of the system under consideration 
[3-51. The role of symmetry groups and their algebras is well understood and numerous 
applications have been carried out which explain features such as the degeneracy of 
states and the appearance of selection rules, often providing new insights into the 
nature of physical systems, besides simplifying the mathematical computations. 

Non-invariance groups, whose generators do not all commute with the Hamiltonian 
of the system, have also been increasingly used in the literature, one example being 
the spectrum generating algebras [6] (notably SU(1, l)), which provide an elegant 
means to determine the spectrum of certain second-order differential equations. Of 
greater importance are the so-called dynamical groups which, however, are often 
loosely defined. Thus, Wybourne writes: ‘Ideally we seek a group that can yield the 
energy spectrum and the degeneracies of the levels, and that contains a set of operators 
that determine the transition probabilities between states’ [6], while Wulfman defines 
it as a group that ‘contains sufficient generators to enable one to formulate the dynamics 
of the system or set of systems solely in terms of operations on a single irreducible 
representation of the group’ [7]. The latter definition is essentially equivalent to that 
introduced by Dothan et a1 in particle physics, who require that the Hamiltonian and 
other dynamical operators of the system be-expressible in terms of powers of the 
generators of the dynamical group [8]. We note that, in contrast to the well known 
prescription defining the elements of the symmetry algebra, they mainly constitute the 
maximum set of operators which close under commutation and commute with the 
Hamiltonian, no unique prescription for the dynamical group generators is provided 
by these definitions. The importance of dynamical groups (and their algebras) was 
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first noted by Goshen and Lipkin [9] in the context of nuclear physics and  later the 
method was exploited in particle physics by Barut and Bohm [lo] and  by Dothan et 
a /  [8]. Since then, there has been an enormous amount of applications, ranging from 
condensed matter physics to field theory and strings [ 111. From the theoretical point 
of view, however, there remained a lack of a precise definition for this generalized 
symmetry. Malkin and Man'ko [ 121 pointed out that if $(x, t )  is a solution of the time 
dependent Schrodinger equation 

then K ( x , p ,  t ) $ ( x ,  t )  is also a solution if K satisfies 

dK 
a t  

i--[H, K ] = O  

that is, if K is a conserved quantity which in general depends explicitly on time. Lipkin 
[13] noted that if K satisfies (1.2) and in general d K / d t  f 0, then K$ should be a 
linear combination of eigenstates of H with different energies so K generates the 
spectrum of H. Later on, Dothan [14] proposed to adopt (1.2) as a dejnition of the 
dynamical group generators. However, although a number of examples were discussed, 
no general technique to derive such generators was provided in [14]. We believe that 
the absence of such a procedure prevented this definition from becoming the standard 
one. Although some authors, notably Barut and  Raczca [ 1 5 ] ,  d o  refer to it, they d o  
not attempt to derive the dynamical algebras from (1.2) but rather demonstrate the 
strength of the algebraic method once the dynamical algebra is known. 

In a series of papers in recent years, a number of quantum mechanical systems 
have been shown to have exact solutions as a consequence of the existence of a 
dynamical supersymmetry [16]. This means that the Hamiltonian turns out to be 
proportional to a generator of a superalgebra and thus its spectrum can be obtained 
by algebraic manipulations. These examples are a generalization of the notion of 
spectrum generating algebras [6] to superalgebras. For our purposes, more than the 
particular examples analysed, we are interested in the technique proposed by Hooker 
er al, who generate their non-invariance (super) algebra using a classical Lagrangian 
and Noether's theorem, allowing time dependent variations [9], although their interest 
is restricted to the generation of the spectrum and not to the construction of the full 
dynamical (super) algebra. As is intuitively obvious, the introduction of such variations 
in a classical Lagrangian leads to conserved quantities whose Poisson bracket with the 
Hamiltonian is not null. That this set of conserved quantities close under the Poisson 
bracket operation is less obvious, however, and the fact that it does leads to the 
algebraic solutions for the system, once the quantum version of the algebra is con- 
structed. 

In this paper we fully exploit the procedure of [16] in order to show that the 
complete dynamical group of a stationary quantum system may be generated by this 
technique and  that this constitutes an  unambiguous definition, which arises naturally 
from the complete set of (in general time-dependent) constants of the motion of the 
system. We also show that these time-dependent charges can be simply interpreted as 
the generators of the symmetry group of the corresponding time-dependent quantum 
system. This result coincides with the definition of Dothan [14], equations (1.1) and  
(1.2). The method is illustrated in the next section by means of a simple one-dimensional 
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harmonic oscillator. In the last section we test the procedure by analysing the n- 
dimensional harmonic oscillator and the Coulomb system. 

2. Noether’s theorem and dynamical groups 

We start by recalling Noether’s theorem. Given a Lagrangian, which is in general a 
function of the coordinates, velocities and time 

L = L(X,, X!, t )  (2.1) 

an  arbitrary, infinitesimal transformation of the coordinate x, 

x, + XI + ax, 

is a symmetry transformation if the corresponding variation in the Lagrangian induced 
by (2.2) can be written as a total time derivative 

6L = d R / d t  (2.3) 
where the equality must hold independently of the equations of motion. Noether’s 
theorem asserts that if (2.3) is satisfied, then to the symmetry transformation (2.2) 
corresponds a conserved quantity K (called Noether charge), given by 

(2.4) 

Noether’s theorem is usually applied in a restricted form, involving only time- 
independent variations Sx,, since these give rise to energy preserving symmetries, i.e. 
conserved quantities whose Poisson bracket with the Hamiltonian is zero. Consider 
for example a general Lagrangian of the form L =  T -  V ( x ) ,  where T is the kinetic 
energy and  V is the potential energy, which is assumed to depend only on the 
coordinates x,. The variation 

sx, = E X ,  (2.5) 
with an infinitesimal constant E ,  induces the Lagrangian variation 

d 
d t  

6 L =  E -  ( T  - V) 

and hence the Noether charge is 

K = E ( T + V )  = E H  (2.7) 
which is proportional to the system’s Hamiltonian. As another simple example, for a 
central potential V(r) and  the variation 

ax, = Eyka jXk  (2.8) 

K = a . L  (2.9) 

where U, is an  infinitesimal constant vector, the Noether charge turns out to be 

where L is the angular momentum vector. Since a is arbitrary, we find that every 
component of L satisfies the equation 

-- - { L,, H} = 0. dL ,  
d t  (2.10) 
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In addition, the Li close under the Poisson bracket operation, i.e. 

{Li, Lj} = &ykLk. (2.11) 

{ K l ,  HI = { K 2 ,  HI = 0 (2.12) 

In the general case, if K ,  and K 2  satisfy 

one can prove that { { K , ,  K 2 } ,  H }  = 0 using the Jacobi identity 

{ H ,  { K l ,  K2} }+  { K l  7 { K 2 ,  HI}+ { K 2 ,  { H ,  KI}} = 0. (2.13) 

Thus, the full set of Noether charges will close among themselves and form a Lie 
algebra [6] under the Poisson bracket operation. 

The quantum mechanical version of (2.10)-(2.13) is obtained by the substitution [17] 

{A, B } + $ [ a ,  51 
1 

(2.14) 

where [ ] denotes the commutator operation and the classical quantities A, B go to 
their operator form. For a central potential, we find the set of equations 

d i ,  1 
d t  i 

- [ i , , A ] = O  [ ii, i,] = i&Jk (2.15a, b )  

which imply that the ii form a Lie algebra under the commutator operation and 
generate the symmetry group SO(3) for the central system. Thus the quantum version 
of (2.12), (2.13) implies that one can start from the classical Lagrangian and use 
Noether’s theorem (in the restricted sense of time-independent variations) to arrive at 
the quantum mechanical symmetry group of the system. 

The above considerations are well known and were presented here for the sake of 
completeness. We now turn our attention to time-dependent variations. As mentioned 
in the introduction, it is clear from the start that such transformations will give rise to 
Noether charges that do not preserve the energy. In the classical case, the equation of 
motion for any function A(x, p ,  t )  in phase space is 

. dA aA 
dt  a t  

A = - = { A ,  H } + -  

and thus any constant of the motion K ,  will satisfy the equation K =0,  or 

aK 
-= - { K ,  H } .  
a t  

(2.16) 

(2.17) 

The substitution (2.12) takes us again to the quantum case. Time-dependent vari- 
ations will lead in general to time-dependent Noether charges and in this case (2.16) 
gives 

(2.18) 

where we used the Jacobi identity. This result is known as Poisson’s theorem [ 181. 
Thus, time-dependent Noether charges again satisfy the group property, in the general- 
ized sense (2.18) (compare with (2.121, (2.13)). The closure clearly extends again to 
quantum mechanics through (2.14). 
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The question arises on what is the nature of this group and whether it may be 
useful, particularly in the quantum mechanical case. We show below that the set of 
time-dependent Noether charges are in fact simply related to the set of generators of 
the dynamical group of quantum systems. 

The quantum mechanical description of the time-dependent wave equation for both 
relativistic and  non-relativistic systems is given by [ 181 

a@ 
a t  

H@=i-  (2.19) 

where denotes the Hamiltonia?. 
Assuming that there is a set { K }  of constants of the motion, the time rate of change 

of any k in the Heisenberg picture is zero and thus, under the replacement of the 
Poisson bracket for its corresponding commutator, a relation analogous to (2.17) is 
satisfied: 

a i  
-i-=[[R,fii]. 

a t  
(2.20) 

We next consider the transformation produced by the operator k on (2.19). By 
using (2.20) we arrive at the relation 

(2.21) 

which shows that one may interpret { k }  as the set of transformations that leave 
invariant the time-dependent wave equation of quantum systems [ 141, i.e. i f  @ satisfies 
(2.19), so does kz@ [19]. 

To illustrate these results we consider a one-dimensional harmonic oscillator with 
the Lagrangian 

L = +( 1’ - x2) (2.22) 

where units in which m = w = 1 are used. 
A time-dependent transformation of x ,  to first order in the coordinates and velocities 

S x = f ( t ) x + g ( t ) x +  h ( t )  (2.23). 

induces a variation of the Lagrangian given by 

6L= - 6 x +  - ( 6 x ) ’  (3 (3 
= ( - x ) ( f X  + gx  + h )  + X(fX +fX + g x  + g f  + h ) .  

This variation can be written in the form (2.3) with 

R = ifX* + i( g - f ) x ’ +  Ax 

f =  -2g 

if the functions f, g and h satisfy the differential equations 

g + 4 g = O  

h + h = O  

(2.24) 

(2.25) 

(2.26a) 

(2.26b) 

( 2 . 2 6 ~ )  
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which can be solved immediately to give 

= A  e 2 ~ r  + B e - 2 i i  (2.27a) 

(2.27b) 

( 2 . 2 7 ~ )  

where A, B, C, D and E are arbitrary constants. Substituting (2.24) and (2.26) into 
the corresponding expression (2.4) we get the following constants of the motion: 

(2.28a) 1 Z t r  [; 
[ :  I 

K _ =  - ( p 2 - x ' ) + x p  e 

K,= - - ( p 2 - x Z ) + x p  e-?'' (2.28b) 

( 2 . 2 8 ~ )  

(2.28d) 

(2.28e) 

where the relation p = aL/aa = x has been used. Under the Poisson bracket operation 
the Noether charges satisfy the relations 

K" = $ (  p2 + X') 

F- = ( p  - ix)  e" 

F+ = ( p  + ix) e-" 

( 2 . 2 9 ~ )  

(2.29b) 

(2 .29~)  

Note that these commutation relations are valid for all t ,  including r = 0. We readily 
identify these equations as defining a Lie algebra composed of a semidirect product 
of a one-dimensional Weyl algebra ( 2 . 2 8 ~ )  and a two-dimensional symplectic algebra 
(2.28a), w(1)  A sp(2, R ) .  One may use equation (2.17) for the Hamiltonian H = KO, 
to verify that the functions (2.27) are indeed conserved. The canonical quantization 
of these functions is accomplished in such a way as to preserve relations (2.28) after 
the substitution (2.14) has been carried out. 

The W(1) A Sp(2, R )  group has been used in the literature as a dynamical group 
for the one-dimensional harmonic oscillator. Here we have proved that this group 
arises naturally from Noether's theorem as a symmetry group of the time-dependent 
system [14]. The realization (2.27) (in its quantum mechanical form) coincides with 
the standard realization for r = 0. Note that the time-independent generators are 
unitarily equivalent to the time-dependent ones: Z? (0) = elrif Z? ( t )  e-IAr,  so one may 
restrict the discussion to the former. In the next section we test the procedure for 
higher-dimensional systems. 

3. Dynamical groups of quantum systems 

In  this section we consider two well known quantum mechanical systems for which 
the procedure indicated in the previous section to define the dynamical group is used. 
These are the n-dimensional harmonic oscillator and the Coulomb problems. 
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We start by considering the harmonic oscillator case. From the analysis made above 
the extension to this system is easily carried out by replacing the scalar functions (2.6) 
by the matricesf;,, g,, and h, ,  with i, j =  1, 2 , .  . . , d, 

sx,  =f;,(t)X,+g,,(t)x,+h,. (3.1) 
The matrices f;, and g,, can be written as the sum of a symmetric matrix (f,:, g;) and  
an  antisymmetric matrix ( f ! ; ,  g;). 

The change in the Lagrangian of a d-dimensional harmonic oscillator under the 
transformation (3.1) is written as a total time derivative if the following equations are 
satisfied: 

f + 2g ; = 0 (3.2a) 

g 1 ) + 4 g i = 0  (3.2b) 

h ,+h ,=O ( 3 . 2 ~ )  

f , ; = o  
g; = 0. 

(3.2d) 

(3.2e) 

The first three relations have the same form as (2.9). Thus the matrices f l : ,  gt and h, 
have the time dependence indicated in (2.10) and it is only necessary to make the 
replacement of the constants A, B, C, D and F by the constant matrices A,,, B,,, C,/, 
D, and F,. Equation (3.2d) implies that the matrix AI must be symmetric, while (3.2e) 
indicates that gc is a constant matrix. The associated Noether charges are given by 

(3.3a) 

(3.36) 

(3.3c) 

L,, = ( x, P/ - x, PI j (3.3d) 

K ,  = ( K ; j *  F ;  = ( F ; ) *  (3.3e) 
where * stands for complex conjugation. These functions of the dynamical variables 
close under the Poisson bracket operation and satisfy the relations 

(3.4a) 

(3.4b) 

(3.4c) 
I 

{ K : ,  KYl } = -U- { K : :  S,, + KT 6,, + KyJ6 , ,+  K ) :  a,, } (3.4d) 

{ K L ,  K ; , } = { F : ' ,  K Y l } = { F Y ,  F;'}=O (3.4e) 

2 

( K : ,  F:'}=-ai/2{S,,F:'+S,, Fj'} (3.4f 1 
{ K ; ,  F I } =  F:S,, +FJ=S,, (3.4g) 
{ F; ,  FJ-} = 2iS,/ (3.4h) 

where the labels 7 and U take the values +, 0, - and +, - respectively. We also 
introduced the definition 

(3.5) G, = $Lr, - i  K"  1 , '  
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From the canonical quantization of (3.4) we conclude that the Noether charges (3.3) 
generate the semidirect product group W(d)  A Sp(2d, R ) ,  which is the dynamical 
symmetry group of the d-dimensional harmonic oscillator, which spans all states of 
the system in a single representation [7]. 

We now turn our attention to the Coulomb problem, in the formulation of Fock 
and Bargmann [ 13, where the Hamiltonian takes the form 

H = t r ( p 2 +  1) (3.6) 

also known as the pseudo-Coulomb Hamiltonian, whose bound-state symmetry group 
is the orthogonal group in four dimensions, SO(4). The group S0(4 ,2)  is usually 
considered as a dynamical group for (3.6), since it contains the symmetry group and 
additional generators that connect all bound states in the system [6]. However, it is 
important to note that an SO(4, 1) subgroup of S0(4 ,2)  already has a representation 
which spans all these states [20]. The generators of both groups connect all the 
eigenstates of (3.6), although SO(4, 1) does not include the dipole operator [6]. This 
is an example of the ambiguity in the definition of the dynamical group. In fact, other 
dynamical groups have been proposed for the Coulomb system [21]. We now apply 
Noether's theorem to Hamiltonian (3.6). 

The corresponding Lagrangian for the pseudo-Coulomb Hamiltonian is given by 

.='("X-.) 
2 r  (3.7) 

and in this case we can use Noether's inverse theorem to establish the associated 
symmetry transformations [18]. Since we know that SO(4) is the symmetry group for 
the system, we use the angular momentum and Runge-Lenz vectors to find 

6xf = & / , k a , x k  (3.8a) 

(3.8b) 

where aj ,  b, are infinitesimal constants and the indices I ,  j ,  k take the values 1, 2, 3. 
Besides these expressions, we know that a variation linear in x k  generates the Hamil- 
tonian as conserved quantity. 

Expressions (3.8) suggest that for the time-dependent variations we consider terms 
at most linear in the velocities and of the form: 

(3.9) 

where J k ,  g / k ,  b, and cl are time-dependent functions. This transformation induces a 
variation in the Lagrangian of the form (2.3), if the following equations are satisfied: 

(3.10a) 

(3.10b) 

f = - g  ( 3 . 1 0 ~ )  

g + g = o  (3.10d) 

c/ + c/ = 0 (3.10e) 

b, = C / .  (3.10f) 
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The value of R is given by 

( 3 . 1 1 ~ )  f R = - x'+ (g  - f / 2 ) r +  b .  A + ( c +  b )  * x 
2r 

where A denotes the Runge-Lenz vector, 

(3.11b) 

The solutions of (3.10) are straightforward and given by 

g y k  = E/k,a, ( 3 . 1 2 ~ )  

g( t )  = A e"+ B e-" (3.12b) 

f( t )  = i(A elr - B e-") + C ( 3 . 1 2 ~ )  

cI( t )  = D/ e" + E, e-" (3.12d) 

b,( t )  = -i( D, e" - E, e-") + F! (3.12e) 

which contain fifteen independent constants, a / ,  A, B, C, D!, El ,  and F,. The correspond- 
ing conserved quantities are given by 

H = f r ( p 2 +  1) ( 3 . 1 3 ~ )  

C +  = e-"{-iH + x .  p+ir}  c- = (C+)*  (3.13b) 

( 3 . 1 3 ~ )  

(3.13d) 

which are obtained by substituting (3.11) and (3.12) into the corresponding equation 
(2.4). 

The Noether charges (3.13) close under the Poisson bracket operation and satisfy 
the relations 

( 3 . 1 4 ~ )  { L/, C'} = { L,, H} = {A/, H }  = 0 

{L!, Lk} = elk,", Ak} = &/kjL, {"/, Ak} = Elk/, (3.146) 

{c=, M : }  = 0 {JL M i }  = Qk,M: ( 3 . 1 4 ~ )  

(3.14d) 

(3.14e) 

(3.14f 1 
(3.14g) 

This Poisson bracket algebra corresponds to the S0(4 ,2)  Lie algebra [ 2 2 ]  and 
expressions (3.14b) and  (3.14d) to the subalgebras SO(4) and  SO(2, l ) ,  respectively. 
The canonical quantization of the Noether charges is carried out in such a way as to 
preserve relations (3.14) after the substitution (2.14) has been effected. We conclude 
that the symmetry group of the time-dependent pseudo-Coulomb Hamiltonian (3.6) 
is S0(4,2) .  For t = 0 the commutation relations (3.14) are still satisfied, although the 
generators are not constants of the motion. We thus find that S0(4 ,2)  is the dynamical 
group for the stationary system. 
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4. Conclusions 

In this paper we have shown that the dynamical group of a time-independent quantum 
system can be obtained by applying Noether’s theorem to the classical Lagrangian, 
allowing time dependence in the infinitesimal parameters of the variation. The form 
of the latter is suggested by the time-independent variations, which lead to the Noether 
charges generating the symmetry group. Once the Poisson algebra has been constructed, 
canonical qu3ntization is straightforward. The defining equation for the time-dependent 
generators K , ( t )  is simply given by 

(4.1) 

which is equivalent to (2.21). The set {it(?)} thus generates the symmetry group for 
the time-dependent system, while the set { i , ( O ) }  generates the dynamical group for 
the corresponding stationary system [ 141. This method leads to the W (  d )  A Sp(2d, R )  
and S 0 ( 4 , 2 )  dynamical groups for the d-dimensional harmonic oscillator and the 
Coulomb system, respectively. We plan to apply these ideas to other problems and 
explore their usefulness for more complex situations, such as those arising in connection 
with boson-fermion symmetries and supersymmetries [ 161. 

Acknowledgments 

We are grateful to S Hojman for his important contributions to this work and to P 0 
Hess, C Quesne, L F Urrutia and K B Wolf for their many relevant suggestions. 

References 

[ l ]  Fock V 1935 2. Phys. 98 145 
Bargmann V 1936 Z. Phys. 99 576 
Bander M and ltzykson C 1966 Rev. Mod. Phys. 38 330; 346 

Moshinsky M and Quesne C 1968 Oscillator Systems in Symmetry Properties of Nuclei Proc. 15th 
[2] Jauch J M and Hill E L 1940 Phys. Rev. 57 641 

Solvay Conf: on Physics (New York: Gordon and Breach) 
[3] Elliott J P 1958 Proc. R.  Soc. A 245 128 
r41 Arima A and Iachello F 1976 Ann.  Phys. 94 253; 1978 Ann.  Phys. 111 201 

Rosensteel G and Rowe D J 1979 Ann.  Phys. 123 36; 1980 Ann.  Phys. 126 198; 343 
Wybourne B G 1974 Classical Groupsfor  Physicists (New York: Wiley) 
Wulfman C E 1971 Group Theory and Its Applications vol 11, ed E M Loebl (New York: Academic) 

Dothan Y, Gell-Mann M and Ne’eman Y 1965 Phys. Lett. 17 148 
Goshen S and Lipkin H J 1959 Ann.  Phys. 6 301 
Barut A 0 and Bohm A 1965 Phys. Rev. B 139 1107 
Bohm A, Ne’eman Y and Barut A 0 (eds) 1988 Dynamical Groups and Spectrum Generating Algebras 

Malkin I A and Man’ko V I 1965 JETP Lett. 2 146 
Lipkin H J 1969 Nuclear Physics ed C De Witt and V Gillet (New York: Gordon and Breach) p 644 
Dothan Y 1970 Phys. Reu. D 2 2944 
Barut A 0 and Raczka R 1986 Theory of Group Representations and Applicarionr (Singapore: World 

D’Hoker E and Vinet L 1985 Commun. Math. Phys. 97 391 
Schiff L I 1968 Quantum Mechanics (New York: McGraw-Hill) 

pp 145-7 

vols 1, 2 (Singapore: World Scientific) 

Scientific) 



Noether's theorem and dynamical groups 

[18] Saletan E J and Cromer A H 1971 Theoretical Mechanics (New York: Wiley) 
[19] Olver P J 1986 Application's of Lie Groups to Diferential Equations (Berlin: Springer) 

Niederer U 1973 Helc. Phys. Acta 46 191 
Boyer C P, Sharp R T and Winternitz P 1976 J. Math. Phys. 17 1439 

[20] Barut A 0 and Kleinert A 1967 Phys. Rev. 156 1541 
[21] Boyer C P and Wolf K B 1973 Lett. Nuooo Cimenfo 8 458 
[22] Wolf K B 1971 Suppl. Nuouo Cimento 5 1663 

5151 


